Part Number Hot Search : 
10ETS12 5B12D QD8254 D5CYD08 101J2 5F120 0CTPFB Y1112L
Product Description
Full Text Search
 

To Download AD8038AKS-R2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  rev. f ad8038/ad8039 low power 350 mhz voltage feedback amplifiers information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781/329-4700 www.analog.com fax: 781/326-8703 ?2004 analog devices, inc. all rights reserved. features low power 1 ma supply current/amp high speed 350 mhz, ? db bandwidth (g = +1) 425 v/  s slew rate low cost low noise 8 nv/ hz @ 100 khz 600 fa/ hz @ 100 khz low input bias current: 750 na max low distortion ?0 db sfdr @ 1 mhz ?5 db sfdr @ 5 mhz wide supply range: 3 v to 12 v small packaging: sot-23-8, sc70-5, and soic-8 applications battery-powered instrumentation filters a/d drivers level shifting buffering high density pc boards photo multipliers soic-8 (r) and sot-23-8 (rt) ad8039 8 7 6 5 1 2 3 4 v out1 ?n1 + in1 ? s +v s v out2 ?n2 + in2 product description the ad8038 (single) and ad8039 (dual) amplifiers are high speed (350 mhz) voltage feedback amplifiers with an exception- ally low quiescent current of 1.0 ma/amplifier typical (1.5 ma max). the ad8038 single amplifier in the soic-8 package has a dis- able feature. despite being low power and low cost, the amplifier provides excellent overall performance. additionally, it offers ah igh slew rate of 425 v/ s and low input offset voltage of 3mvmax. adi s proprietary xfcb process allows low noise operation (8 nv/ hz and 600 fa/ hz ) at extremely low quiescent currents. given a wide supply voltage range (3 v to 12 v), wide band- width, and small packaging, the ad8038 and ad8039 amplifiers are designed to work in a variety of applications where power and space are at a premium. the ad8038 and ad8039 amplifiers have a wide input common- mode range of 1 v from either rail and will swing within 1 v of each rail on the output. these amplifiers are optimized for driving capacitive loads up to 15 pf. if driving larger capacitive loads, a small series resistor is needed to avoid excessive peaking or overshoot. the ad8039 amplifier is the only dual, low power, high speed amplifier available in a tiny sot-23-8 package, and the single ad8038 is available in both a soic-8 and an sc70-5 package. these amps are rated to work over the industrial temperature range of C 40 c to +85 c. ? 0.1 1000 110 100 ? 0 3 6 9 12 15 18 21 24 frequency ?mhz gain ?db g = +5 g = +2 g = +1 g = +10 figure 1. small signal frequency response for various gains, v out = 500 mv p-p, v s = 5 v soic-8 (r) 8 7 6 5 1 2 3 4 nc ?n +in disable +v s v out nc ? s ad8038 nc = no connect sc70-5 (ks) 1 2 3 5 4 ?n +in +v s v out ad8038 + ? s connection diagrams
rev. f e2e ad8038/ad8039especifications (t a = 25  c, v s =  5 v, r l = 2 k  , gain = +1, unless otherwise noted.) parameter conditions min typ max unit dynamic performance ? 3 db bandwidth g = +1, v o = 0.5 v p-p 300 350 mhz g = +2, v o = 0.5 v p-p 175 mhz g = +1, v o = 2 v p-p 100 mhz bandwidth for 0.1 db flatness g = +2, v o = 0.2 v p-p 45 mhz slew rate g = +1, v o = 2 v step, r l = 2 k  400 425 v/ s overdrive recovery time g = +2, 1 v overdrive 50 ns settling time to 0.1% g = +2, v o = 2 v step 18 ns noise/harmonic performance sfdr second harmonic f c = 1 mhz, v o = 2 v p-p, r l = 2 k  ? 90 dbc third harmonic f c = 1 mhz, v o = 2 v p-p, r l = 2 k  ? 92 dbc second harmonic f c = 5 mhz, v o = 2 v p-p, r l = 2 k  ? 65 dbc third harmonic f c = 5 mhz, v o = 2 v p-p, r l = 2 k  ? 70 dbc crosstalk, output-to-output (ad8039) f = 5 mhz, g = +2 ? 70 db input voltage noise f = 100 khz 8 nv/  hz input current noise f = 100 khz 600 fa/  hz dc performance input offset voltage 0.5 3 mv input offset voltage drift 4.5 v/ c input bias current 400 750 na input bias current drift 3na/ c input offset current 25 na open-loop gain v o = 2.5 v 70 db input characteristics input resistance 10 m  input capacitance 2pf input common-mode voltage range r l = 1 k  4v common-mode rejection ratio v cm = 2.5 v 61 67 db output characteristics dc output voltage swing r l = 2 k  , saturated output 4v capacitive load drive 30% overshoot, g = +2 20 pf power supply operating range 3.0 12 v quiescent current per amplifier 1.0 1.5 ma power supply rejection ratio ? supply ? 71 ? 77 db + supply ? 64 ? 70 db power-down disable * turn-on time 180 ns turn-off time 700 ns disable voltage ? part is off +v s ? 4.5 v disable voltage ? part is on +v s ? 2.5 v disabled quiescent current 0.2 ma disabled in/out isolation f = 1 mhz ? 60 db * only available in ad8038 soic-8 package. specifications subject to change without notice.
rev. f ad8038/ad8039 e3e specifications (t a = 25  c, v s = 5 v, r l = 2 k  to v s /2 , gain = +1, unless otherwise noted.) parameter conditions min typ max unit dynamic performance ? 3 db bandwidth g = +1, v o = 0.2 v p-p 275 300 mhz g = +2, v o = 0.2 v p-p 150 mhz g = +1, v o = 2 v p-p 30 mhz bandwidth for 0.1 db flatness g = +2, v o = 0.2 v p-p 45 mhz slew rate g = +1, v o = 2 v step, r l = 2 k  340 365 v/ s overdrive recovery time g = +2, 1 v overdrive 50 ns settling time to 0.1% g = +2, v o = 2 v step 18 ns noise/harmonic performance sfdr second harmonic f c = 1 mhz, v o = 2 v p-p, r l = 2 k  ? 82 dbc third harmonic f c = 1 mhz, v o = 2 v p-p, r l = 2 k  ? 79 dbc second harmonic f c = 5 mhz, v o = 2 v p-p, r l = 2 k  ? 60 dbc third harmonic f c = 5 mhz, v o = 2 v p-p, r l = 2 k  ? 67 dbc crosstalk, output-to-output f = 5 mhz, g = +2 ? 70 db input voltage noise f = 100 khz 8 nv/  hz input current noise f = 100 khz 600 fa/  hz dc performance input offset voltage 0.8 3 mv input offset voltage drift 3 v/ c input bias current 400 750 na input bias current drift 3na/ c input offset current 30 na open-loop gain v o = 2.5 v 70 db input characteristics input resistance 10 m  input capacitance 2pf input common-mode voltage range r l = 1 k  1.0 ? 4.0 v common-mode rejection ratio v cm = 1 v 59 65 db output characteristics dc output voltage swing r l = 2 k  , saturated output 0.9 ? 4.1 v capacitive load drive 30% overshoot 20 pf power supply operating range 3 12 v quiescent current per amplifier 0.9 1.5 ma power supply rejection ratio ? 65 ? 71 db power-down disable * turn-on time 210 ns turn-off time 700 ns disable voltage ? part is off +v s ? 4.5 v disable voltage ? part is on +v s ? 2.5 v disabled quiescent current 0.2 ma disabled in/out isolation f = 1 mhz ? 60 db * only available in ad8038 soic-8 package. specifications subject to change without notice.
rev. f e4e ad8038/ad8039 absolute maximum ratings * supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 v power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . see figure 2 common-mode input voltage . . . . . . . . . . . . . . . . . . . . . . . v s differential input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 4 v storage temperature . . . . . . . . . . . . . . . . . . . . ? 65 c to +125 c operating temperature range . . . . . . . . . . . . . ? 40 c to +85 c lead temperature range (soldering 10 sec) . . . . . . . . . . . 300 c * stresses above those listed under absolute maximum ratings may cause perma- nent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. maximum power dissipation the maximum safe power dissipation in the ad8038/ad8039 package is limited by the associated rise in junction temperature ( t j ) on the die. the plastic encapsulating the die will locally reach the junction temperature. at approximately 150 c, which is the glass transition temperature, the plastic will change its properties. even temporarily exceeding this temperature limit may change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ad8038/ad8039. exceeding a junction temperature of 175 c for an extended period of time can result in changes in the silicon devices, potentially causing failure. the still-air thermal properties of the package and pcb (  j a ), ambient temperature ( t a ), and total power dissipated in the package ( p d ) determine the junction temperature of the die. the junction temperature can be calculated as follows: tt p ada j =+ ()  j the power dissipated in the package ( p d ) is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. the quiescent power is the voltage between the supply pins ( v s ) multiplied by the quiescent current ( i s ). assum- ing the load ( r l ) is referenced to midsupply, then the total drive power is v s /2  i out , some of which is dissipated in the package and some in the load ( v out  i out ). the difference between the total drive power and the load power is the drive power dissipated in the package. p d = quiescent power + (total drive power ? load power) pvi v/v /r ? v /r dss s out l out l = [] + () () [] [] 2 2 ambient temperature e  c 0 e55 maximum power dissipation e w 1.0 e25 5 35 65 95 125 1.5 2.0 soic-8 0.5 sot-23-8 sc70-5 figure 2. maximum power dissipation vs. temperature for a 4-layer board rms output voltages should be considered. if r l is referenced to v s ? ,as in single-supply operation, then the total drive power is v s  i out . if the rms signal levels are indeterminate, consider the worst case, when v out = v s /4 for r l to midsupply: pvi v /4 /r dss s 2 l = () + () in single-supply operation with r l referenced to v s? , worst case is v out = v s /2. airflow will increase heat dissipation, effectively reducing  j a . also, more metal directly in contact with the package leads from metal traces, through-holes, ground, and power planes will reduce the  j a . care must be taken to minimize parasitic capacitances at the input leads of high speed op amps as discussed in the board layout section. figure 2 shows the maximum safe power dissipation in the package versus the ambient temperature for the soic-8 (125 c/w), sc70-5 (210 c/w), and sot-23-8 (160 c/w) package on a jedec standard 4-layer board.  j a values are approximations. output short circuit shorting the output to ground or drawing excessive current from the ad8038/ad8039 will likely cause a catastrophic failure. caution esd (electrostatic discharge) sensitive device. electrostatic charges as high as 4000 v readily accumulate on the human body and test equipment and can discharge without detection. although the ad8038/ad8039 features proprietary esd protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. therefore, proper esd precautions are recommended to avoid performance degradation or loss of functionality. ordering guide model temperature range package description package outline branding information ad8038ar ? 40 c to +85 c 8-lead soic r-8 ad8038ar-reel ? 40 c to +85 c 8-lead soic r-8 ad8038ar-reel7 ? 40 c to +85 c 8-lead soic r-8 AD8038AKS-R2 ? 40 c to +85 c 5-lead sc70 ks-5 hua ad8038aks-reel ? 40 c to +85 c 5-lead sc70 ks-5 hua ad8038aks-reel7 ? 40 c to +85 c 5-lead sc70 ks-5 hua ad8039ar ? 40 c to +85 c 8-lead soic r-8 ad8039ar-reel ? 40 c to +85 c 8-lead soic r-8 ad8039ar-reel7 ? 40 c to +85 c 8-lead soic r-8 ad8039art-r2 ? 40 c to +85 c 8-lead sot-23 rt-8 hya ad8039art-reel ? 40 c to +85 c 8-lead sot-23 rt-8 hya ad8039art-reel7 ? 40 c to +85 c 8-lead sot-23 rt-8 hya
rev. f t ypical performance characteristicsead8038/ad8039 e5e frequency e mhz gain e db e6 0.1 1000 110 100 e3 0 3 6 9 12 15 18 21 24 g = +5 g = +2 g = +1 g = +10 frequency e mhz gain e db 0.1 1000 110 100 0 1 6 7 v s =  5v 5 4 3 2 v s =  2.5v v s =  1.5v frequency e mhz gain e db 0.1 1000 110 100 0 1 6 7 r l = 2k  5 4 3 2 r l = 1k  r l = 500  (default conditions:  5 v, c l = 5 pf, g =  2, r g = r f = 1 k  , r l = 2 k  , v o = 2 v p-p, frequency = 1 mhz, t a = 25  c.) tpc 1. small signal frequency response for various gains, v out = 500 mv p-p frequency e mhz gain e db 0.1 1000 110 100 0 1 6 7 r l = 2k  5 4 3 2 r l = 1k  r l = 500  tpc 4. small signal frequency response for various r load , v s = 5 v, v out = 500 mv p-p frequency e mhz gain e db 0 e4 1 2 3 4 110 100 c l = 15pf c l = 10pf c l = 5pf e5 e3 e2 e1 5 1000 tpc 7. small signal frequency response for various c load , v out = 500 mv p-p, v s = 5 v, g = +1 tpc 2. small signal frequency response for various supplies, v out = 500 mv p-p frequency e mhz gain e db 0 0.1 1 2 3 4 5 6 7 8 110 100 r l = 500  r l = 2k  r l = 1k  tpc 5. large signal frequency response for various r load , v out = 3 v p-p, v s = 5 v frequency e mhz gain e db 1 3 110 100 c l = 10pf c l = 5pf e5 e3 e1 5 1000 7 c l = 15pf tpc 8. small signal frequency response for various c load , v out = 500 mv p-p, v s = 5 v, g = +1 tpc 3. small signal frequency response for various r load , v s = 5 v, v out = 500 mv p-p frequency e mhz gain e db 0 0.1 1 2 3 4 5 6 7 8 110 100 r l = 500  r l = 2k  r l = 1k  tpc 6. large signal frequency response for various r load , v out = 4 v p-p, v s = 5 v frequency e mhz gain e db 0.1 1000 110 100 e6 1 v out = 500mv 2 v out = 200mv v out = 2v v out = 1v e5 e4 e3 e2 e1 0 tpc 9. frequency response for various output voltage levels
rev. f e6e ad8038/ad8039 frequency e mhz open-loop gain e db 0 0.01 10 0.1 1 10 100 1000 gain 20 30 40 50 60 70 80 phase 0 phase e degrees e10 e20 180 45 e45 135 90 tpc 10. open-loop gain and phase, v s = 5 v frequency e mhz 18 2 34567 harmonic distortion e dbc e90 e85 e80 e75 e70 e65 e60 e55 e50 910 r l = 500  hd2 r l = 500  hd3 r l = 2k  hd3 r l = 2k  hd2 e45 tpc 13. harmonic distortion vs. frequency for various loads, v s = 5 v, v out = 2 v p-p, g = +2 amplitude e v p-p 1 23 4 harmonic distortion e dbc e100 e80 e70 e60 e50 10mhz hd2 10mhz hd3 5mhz hd2 5mhz hd3 1mhz hd2 1mhz hd3 e90 e40 tpc 16. harmonic distortion vs. v out amplitude for various frequencies, v s = 5 v, g = +2 frequency e mhz gain e db 0.1 1000 110 100 0 6 9 3 e3 e40  c +85  c +25  c tpc 11. frequency response vs. temperature, gain = +2, v s = 5 v, v out = 2 v p-p frequency e mhz 18 2345 67 harmonic distortion e dbc e90 e80 e70 e60 e50 910 g = +1 hd2 g = +2 hd2 g = +1 hd3 g = +2 hd3 e100 tpc 14. harmonic distortion vs. frequency for various gains, v s = 5 v, v out = 2 v p-p amplitude e v p-p 1.0 harmonic distortion e dbc e85 e75 e65 e55 10mhz hd2 10mhz hd3 5mhz hd2 5mhz hd3 1mhz hd2 e95 e45 1.5 2.0 2.5 3.0 1mhz hd3 tpc 17. harmonic distortion vs. amplitude for various frequencies, v s = 5 v, g = +2 frequency e mhz 18 2345 67 harmonic distortion e dbc e90 e85 e80 e75 e70 e65 e60 e55 e50 910 r l = 500  hd2 r l = 500  hd3 r l = 2k  hd3 r l = 2k  hd2 tpc 12. harmonic distortion vs. frequency for various loads, v s = 5 v, v out = 2 v p-p, g = +2 frequency e mhz 18 2345 67 harmonic distortion e dbc e100 e90 e70 e60 e50 910 g = +1 hd2 g = +2 hd2 g = +1 hd3 g = +2 hd3 e80 tpc 15. harmonic distortion vs. frequency for various gains, v s = 5 v, v out = 2 v p-p 1000 vo ltag e noise e nv/ hz 100 10 1 10 frequency e hz 10m 100k 1k 100 10k 1m 100m tpc 18. input voltage noise vs. frequency
rev. f ad8038/ad8039 e7e frequency e hz 100 10 100 1000 10000 100000 1m noise e fa/ hz 1000 100000 10000 tpc 19. input current noise vs. frequency 50mv/div 5ns/div c l = 25pf with r snub = 19.6  c l = 10pf c l = 5pf tpc 22. small signal transient response for various capacitive loads, v s = 5 v r l = 500  r l = 2k  1v/div 5ns/div tpc 25. large signal transient response for various r load , v s = 5 v r l = 500  r l = 2k  50mv/div 5ns/div tpc 20. small signal transient response for various r load , v s = 5 v 50mv/div 5ns/div c l = 25pf with r snub = 19.6  c l = 10pf c l = 5pf tpc 23. small signal transient response for various capacitive loads, v s = 5 v c l = 25pf 500mv/div 5ns/div c l = 5pf 2.5v tpc 26. large signal transient response for various capacitive loads, v s = 5 v r l = 500  r l = 2k  50mv/div 5ns/div tpc 21. small signal transient response for various r load , v s = 5 v r l = 500  r l = 2k  500mv/div 5ns/div 2.5v tpc 24. large signal transient response for various r load , v s = 5 v 500mv/div 5ns/div c l = 10pf c l = 5pf tpc 27. large signal transient response for various capacitive loads, v s = 5 v
rev. f e8e ad8038/ad8039 out in 2v/div 50ns/div tpc 28. input overdrive recovery, gain = +1 frequency e mhz crosstalk e db 0.1 1000 110 100 side a e100 e40 e20 side b e10 e30 e50 e60 e70 e80 e90 tpc 31. ad8039 crosstalk, v in = 1 v p-p, gain = +1 psrr e db e90 e80 e70 e60 e50 e40 e30 e20 e10 0 10 + psrr epsrr frequency e mhz 0.01 1000 0.1 10 100 1 tpc 34. psrr vs. frequency input 1v/div output 2v/div 50ns/div in out tpc 29. output overdrive recovery, gain = +2 frequency e mhz cmrr e db 1 1000 10 100 v s = +5v e80 e70 e60 e50 e40 e30 e20 e10 v s =  5v tpc 32. cmrr vs. frequency, v in = 1 v p-p r load e  200 300 500 v out e p-p 0 1 2 3 4 5 6 7 8 9 v s = +5v v s =  5v 0 100 400 tpc 35. output swing vs. load resistance 0.5v/div 5ns/div 2mv/div v in error voltage v s =  5v g = +2 v out = 2v p-p +0.1% e0.1% 0 t = 0 tpc 30. 0.1% settling time v out = 2 v p-p frequency e mhz impedance e  0.1 0.01 0.1 1 10 100 1000 v s =  5v v s = +5v 1 10 100 1000 tpc 33. output impedance vs. frequency supply voltage e v supply current e ma 1.25 1.00 0 0 12 246810 0.75 0.50 0.25 tpc 36. ad8038 supply current vs. supply voltage
rev. f ad8038/ad8039 e9e frequency e mhz isolation e db e90 e80 e70 e60 e50 e40 e30 e20 e10 0 0.1 1000 1.0 10 100 tpc 37. ad8038 input-output isolation (g = +2, r l = 2 k  , v s = 5 v layout, grounding, and bypassing considerations disable the ad8038 in the soic-8 package provides a disable feature. this feature disables the input from the output (see tpc 37 for input-output isolation) and reduces the quiescent current from typically 1 ma to 0.2 ma. when the disable node is pulled below 4.5 v from the positive supply rail, the part becomes disabled. in order to enable the part, the disable node needs to be pulled up to above 2.5 v below the positive rail. power supply bypassing power supply pins are actually inputs, and care must be taken so that a noise-free stable dc voltage is applied. the purpose of bypass capacitors is to create low impedances from the supply to ground at all frequencies, thereby shunting or filtering a majority of the noise. decoupling schemes are designed to minimize the bypassing impedance at all frequencies with a parallel combination of capaci- tors. 0.01 f or 0.001 f (x7r or npo) chip capacitors are critical and should be as close as possible to the amplifier pack- age. larger chip capacitors, such as the 0.1 f capacitor, can be shared among a few closely spaced active components in the same signal path. a 10 f tantalum capacitor is less critical for high frequency bypassing and, in most cases, only one per board is needed at the supply inputs. grounding a ground plane layer is important in densely packed pc boards to spread the current minimizing parasitic inductances. however, an understanding of where the current flows in a circuit is critical to implementing effective high speed circuit design. the length of the current path is directly proportional to the magnitude of parasitic inductances, and thus the high frequency impedance of the path. high speed currents in an inductive ground return will create an unwanted voltage noise. the length of the high frequency bypass capacitor leads are most critical. a parasitic inductance in the bypass grounding will work against the low impedance created by the bypass capacitor. place the ground leads of the bypass capacitors at the same physical location. because load currents flow from the supplies as well, the ground for the load impedance should be at the same physical location as the bypass capacitor grounds. for the larger value capacitors, which are intended to be effective at lower frequencies, the current return path distance is less critical. input capacitance along with bypassing and ground, high speed amplifiers can be sensitive to parasitic capacitance between the inputs and ground. a few pf of capacitance will reduce the input impedance at high frequencies, in turn increasing the amplifiers ? gain, causing peak- ing of the frequency response, or even oscillations if severe enough. it is recommended that the external passive components that are connected to the input pins be placed as close as possible to the inputs to avoid parasitic capacitance. the ground and power planes must be kept at a distance of at least 0.05 mm from the input pins on all layers of the board. output capacitance to a lesser extent, parasitic capacitances on the output can cause peaking of the frequency response. there are two methods to minimize this effect. 1. put a small value resistor in series with the output to isolate the load capacitor from the amp ? s output stage; see tpcs 7, 8, 22, and 23. 2. increase the phase margin with higher noise gains or add a pole with a parallel resistor and capacitor from ? in to the output. input-to-output coupling the input and output signal traces should not be parallel to minimize capacitive coupling between the inputs and outputs, avoiding any positive feedback. applications low power adc driver 8 1 0.1  f10  f +5v 0.1  f 10  f 7 0.1  f 10  f e5v 3 2 6 5 4 ad8039 1k  1k  1k  1k  vina vinb ref 50  50  ad9203 1k  1k  1k  1k  v in 0v 3v 2.5v figure 3. schematic to drive ad9203 with the ad8039 differential a/d driver the ad9203 is a low power (125 mw on a 5 v supply) 40 msps 10-bit converter. this represents a breakthrough in power/speed for adcs. as such, the low power, high performance ad8039 is an appropriate choice of amplifier to drive it. in low supply voltage applications, differential analog inputs are needed to increase the dynamic range of the adc inputs. differential driving can also reduce second and other even-order distortion products. the ad8039 can be used to make a dc-coupled, single-ended-to-differential driver for one of these adcs. figure 3 is a schematic of such a circuit for driving an ad9203, a 10-bit, 40 msps adc.
rev. f e10e ad8038/ad8039 the ad9203 works best when the common-mode voltage at the input is at the midsupply or 2.5 v. the output stage design of the ad8039 makes it ideal for driving these types of adcs. in this circuit, one of the op amps is configured in the inverting mode, while the other is in the noninverting mode. however, to provide better bandwidth matching, each op amp is configured for a noise gain of +2. the inverting op amp is configured for a gain of ? 1, while the noninverting op amp is configured for a gain of +2. each has a very similar ac response. the input signal to the noninverting op amp is divided by 2 to normalize its voltage level and make it equal to the inverting output. the outputs of the op amps are centered at 2.5 v, which is the midsupply level of the adc. this is accomplished by first taking the 2.5 v reference output of the adc and dividing it by 2 with a pair of 1 k  resistors. the resulting 1.25 v is applied to each op amp ? s positive input. this voltage is then multiplied by the gain of the op amps to provide a 2.5 v level at each output. low power active video filter some composite video signals derived from a digital source contain clock feedthrough that can limit picture quality. active filters made from op amps can be used in this application, but they will consume 25 mw to 30 mw for each channel. in power-sensitive applications, this can be too much, requiring the use of passive filters that can create impedance matching problems when driving any significant load. the ad8038 can be used to make an effective low-pass active filter that consumes one-fifth of the power consumed by an active filter made from an op amp. figure 4 shows a circuit that uses an ad8038 to create a single 2.5 v supply, three-pole sallen-key filter. this circuit uses a single rc pole in front of a standard two-pole active section. 0.1  f +2.5v 10  f e2.5v 0.1  f 10  f c3 33pf r3 49.9  r f 1  680pf r5 75  r2 499  c1 100pf r1 200  r4 49.9  ad8038 v in v out figure 4. low-pass filter for video figure 5 shows the frequency response of this filter. the response is down 3 db at 6 mhz, so it passes the video band with little attenuation. the rejection at 27 mhz is 45 db, which provides more than a factor of 100 in suppression of the clock components at this frequency. frequency e mhz 0.1 gain e db 110 100 e10 10 0 e20 e30 e40 e50 e60 figure 5. video filter response
rev. f ad8038/ad8039 e11e outline dimensions 5-lead thin shrink small outline transistor package [sc70] (ks-5) dimensions shown in millimeters 0.30 0.15 1.00 0.90 0.70 seating plane 1.10 max 0.22 0.08 0.46 0.36 0.26 3 5 4 1 2 2.00 bsc pin 1 2.10 bsc 0.65 bsc 1.25 bsc 0.10 max 0.10 coplanarity compliant to jedec standards mo-203aa 8-lead small outline transistor package [sot-23] (rt-8) dimensions shown in millimeters 1 3 5 6 2 8 4 7 2.90 bsc 1.60 bsc 1.95 bsc 0.65 bsc 0.38 0.22 0.15 max 1.30 1.15 0.90 seating plane 1.45 max 0.22 0.08 0.60 0.45 0.30 8  4  0  2.80 bsc pin 1 indicator compliant to jedec standards mo-178ba 8-lead standard small outline package [soic] (r-8) dimensions shown in millimeters and (inches) 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 0.50 (0.0196) 0.25 (0.0099)  45  8  0  1.75 (0.0688) 1.35 (0.0532) seating plane 0.25 (0.0098) 0.10 (0.0040) 85 4 1 5.00 (0.1968) 4.80 (0.1890) 4.00 (0.1574) 3.80 (0.1497) 1.27 (0.0500) bsc 6.20 (0.2440) 5.80 (0.2284) 0.51 (0.0201) 0.31 (0.0122) coplanarity 0.10 controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design compliant to jedec standards ms-012aa
rev. f c02951e0e8/04(f) e12e ad8038/ad8039 revision history location page 8/04edata sheet changed from rev. e to rev. f. changes to figure 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 8/03edata sheet changed from rev. d to rev. e. change to tpc 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 7/03edata sheet changed from rev. c to rev. d. changes to ordering guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 updated tpc 35 caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6/03edata sheet changed from rev. b to rev. c. updated connection diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 updated ordering guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 updated outline dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5/02edata sheet changed from rev. a to rev. b. add part number ad8038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . universal changes to product title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 changes to features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 changes to product description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 changes to connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 update to specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 update to maximum power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 update to output short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 update to ordering guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 change to figure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 change to tpc 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 change to tpc 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 change to tpc 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 change to tpc 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 change to tpc 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 change to tpc 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 added tpc 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 added tpc 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 edits to low power active video filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 change to figure 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4/02edata sheet changed from rev. 0 to rev. a. changes to features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 update specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 3 edits to tpc 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7


▲Up To Search▲   

 
Price & Availability of AD8038AKS-R2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X